The Inositol Phosphatase SHIP-1 Inhibits NOD2-Induced NF-κB Activation by Disturbing the Interaction of XIAP with RIP2
نویسندگان
چکیده
SHIP-1 is an inositol phosphatase predominantly expressed in hematopoietic cells. Over the ten past years, SHIP-1 has been described as an important regulator of immune functions. Here, we characterize a new inhibitory function for SHIP-1 in NOD2 signaling. NOD2 is a crucial cytoplasmic bacterial sensor that activates proinflammatory and antimicrobial responses upon bacterial invasion. We observed that SHIP-1 decreases NOD2-induced NF-κB activation in macrophages. This negative regulation relies on its interaction with XIAP. Indeed, we observed that XIAP is an essential mediator of the NOD2 signaling pathway that enables proper NF-κB activation in macrophages. Upon NOD2 activation, SHIP-1 C-terminal proline rich domain (PRD) interacts with XIAP, thereby disturbing the interaction between XIAP and RIP2 in order to decrease NF-κB signaling.
منابع مشابه
HTLV-I Tax regulates the cellular proliferation through the down-regulation of PIP3-phosphatase expressions via the NF-κB pathway.
An oncogenic retrovirus, human T-cell leukemia virus type I (HTLV-I), encodes an oncoprotein, Tax, which plays critical roles in leukemogenesis of adult T-cell leukemia/lymphoma (ATLL) through the pleiotropic actions such as transcriptional regulation, cell cycle control, and transformation. We have previously reported that PTEN and SHIP- 1, PIP3 inositol phosphatases that negatively regulate t...
متن کاملE3 Ubiquitin ligase ZNRF4 negatively regulates NOD2 signalling and induces tolerance to MDP
Optimal regulation of the innate immune receptor nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is essential for controlling bacterial infections and inflammatory disorders. Chronic NOD2 stimulation induces non-responsiveness to restimulation, termed NOD2-induced tolerance. Although the levels of the NOD2 adaptor, RIP2, are reported to regulate both acute and chronic NOD2...
متن کاملThe Tandem CARDs of NOD2: Intramolecular Interactions and Recognition of RIP2
Caspase recruitment domains (CARDs) are homotypic protein interaction modules that link the stimulus-dependent assembly of large signaling platforms such as inflammasomes to the activation of downstream effectors that often include caspases and kinases and thereby play an important role in the regulation of inflammatory and apoptotic signaling pathways. NOD2 belongs to the NOD-like (NLR) family...
متن کاملNod2 and Rip2 contribute to innate immune responses in mouse neutrophils.
Nod-like receptors are a family of innate immune receptors that link cytosolic sensing of microbial and danger stimuli to the activation of immune responses. Two Nod-like receptor family members, Nod1 and Nod2, recognize bacterial peptidoglycan and activate immune responses via nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). The function of Nod1 and Nod2 has been largely ...
متن کاملStructural and functional insights into CARDs of zebrafish (Danio rerio) NOD1 and NOD2, and their interaction with adaptor protein RIP2.
Nucleotide-binding and oligomerization domain-containing protein 1 (NOD1) and NOD2 are cytosolic pattern-recognition receptors (PRRs) composed of an N-terminal caspase activation and recruitment domain (CARD), a central NACHT domain and C-terminal leucine-rich repeats (LRRs). They play a vital role in innate immune signaling by activating the NF-κB pathway via recognition of peptidoglycans by L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012